

UNRAVELING THE GUARDIAN OF THE GENOME: THE ROLE OF P53 IN CHRONIC LYMPHOCYTIC LEUKEMIA

Elsuarta Calliku, Alma Cili, Adela Perolla, Tatjana Caja, Polikron Pulluqi, Arben Ivanaj.
Hematology, UHC "Mother Tereza"

Correspondent E-mail: elacalliku@gmail.com

Abstract

Chronic Lymphocytic Leukemia is a prevalent form of adult leukemia characterized by a heterogeneous clinical course and variable responses to therapy. The p53 protein, often dubbed "the guardian of the genome," plays a pivotal role in cellular responses to DNA damage, including cell cycle arrest, DNA repair, and apoptosis. Mutations in the TP53 gene, which encodes the p53 protein, or alterations in the p53 pathway, are of particular interest in Chronic Lymphocytic Leukemia due to their association with treatment resistance, aggressive disease progression, and poor prognosis. This article synthesizes recent research on the role of p53 in Chronic Lymphocytic Leukemia, emphasizing its impact on disease biology, therapeutic resistance, and clinical outcomes. Studies reveal that p53 mutations not only contribute to chemotherapy resistance but also delineate a subset of patients with significantly worse prognoses. The aberrant expression of p53-regulated non-coding RNAs and alterations in p53 signaling pathways further illustrate the complex role of p53 in Chronic Lymphocytic Leukemia pathogenesis and response to treatment. Furthermore, the interaction between p53 and other cellular pathways, such as Notch signaling, presents new opportunities for targeted therapeutic strategies. These insights underscore the critical role of p53 in Chronic Lymphocytic Leukemia and highlight the need for novel approaches to overcome p53-mediated resistance mechanisms, offering a beacon of hope for improving patient outcomes in this challenging disease.

Keywords: Chronic Lymphocytic Leukemia, p53 pathway, TP53 mutations, Targeted therapies

ZBËRTHIMI I MBROJTESIT TË GJENOMIT: ROLI I P53 NË LEUCEMINË KRONIKE LIMFATIKE

Abstrakt

Leucemia limfocite krontike është një formë mbizotëruese e leucemisë së moshës së rritur që karakterizohet nga një dekurs klinik heterogen dhe përgjigje të ndryshme ndaj terapisë. Proteina p53, shpesh e quajtur «gardiani i gjenomit», luan një rol thelbësor në përgjigjet qelizore ndaj dëmtimit të ADN-së, duke përfshirë ndalimin e ciklit qelizor, riparimin e ADN-së dhe apoptozën. Mutacionet në gjenin TP53, i cili kodon proteinën p53, ose ndryshimet në shtegun p53, janë me interes të veçantë në Leuceminë limfoide krontike për shkak të shoqërimit të tyre me rezistencën ndaj trajtimit, përparimin agresiv të sëmundjeve dhe prognozën e erret. Ky artikull sintetizon kërkimet e fundit mbi rolin e p53 në Leuceminë limfoide krontike duke theksuar ndikimin e tij në biologjinë e sëmundjes, rezistencën terapeutike dhe rezultatet klinike. Studimet zbulojnë se mutacionet p53 jo vetëm që kontribuojnë në rezistencën ndaj kimioterapisë,

por edhe përcaktojnë një nën-grup pacientësh me prognoze dukshëm më të keqe. Shprehja aberrante e RNA-ve jo koduese të rregulluara nga P53 dhe ndryshimet në rrugët e sinjalizimit p53 ilustrojnë më tej rolin kompleks të p53 në patogjenezën e Leucemisë limfoide kronike dhe reagimin ndaj trajtimit. Për më tepër, ndërveprimi midis p53 dhe rrugëve të tjera qelizore, si sinjalizimi Notch, paraqet mundësi të reja për strategji terapeutike të synuara. Këto njojuri theksojnë rolin kritik të p53 në Leuceminë limfoide kronike dhe theksojnë nevojën për qasje të reja për të kapërcyer mekanizmat e rezistencës të ndërmjetësuar nga P53, duke ofruar një dritë shprese për përmirësimin e rezultateve të pacientëve në këtë sëmundje sfiduese.

Fjalë kyçë: Leucemia kronike limfatike , shtegu p53, mutacionet TP53, terapitë target.

Introduction

Chronic Lymphocytic Leukemia (CLL) presents a significant challenge in hematologic malignancies due to its heterogeneity and variable prognosis. Central to the pathogenesis and progression of CLL is the tumor suppressor protein p53, dubbed "the guardian of the genome" for its pivotal role in maintaining genomic stability. p53 exerts its effects through various mechanisms, including the induction of apoptosis, cell cycle arrest, and DNA repair, in response to cellular stress. Mutations or dysregulation of the p53 pathway are associated with aggressive disease phenotypes, resistance to conventional chemotherapy, and poor clinical outcomes in CLL patients. This article provides an overview of recent research findings on the role of p53 in CLL, emphasizing its significance in disease pathology, therapeutic resistance, and implications for treatment strategies.

The impact of p53 mutations on chemotherapy resistance and prognosis in CLL has been well-documented. Blume et al. (2015) highlighted the importance of understanding non-coding RNA targets of p53 in CLL, revealing a landscape of p53-dependent microRNA/non-coding RNA induced in response to DNA damage (1) Similarly, Işın et al. in 2012 demonstrated a significant association between the expression of p53, p14ARF, and HDM2 genes and CLL, suggesting their involvement in the disease's pathophysiology (2). Alterations in the expression and function of p53 isoforms further complicate the disease's behavior. Sellmann et al. (2012) found a strong correlation between deletions of 17p13, accumulation of full-length p53 protein, and adverse outcomes in CLL, indicating the contribution of p53 isoforms to CLL pathogenesis (3) The complexity of the p53 pathway in CLL is further illustrated by Wickremasinghe et al. (2011), who discussed the interplay between p53 and the Notch signaling pathway in controlling apoptosis in CLL cells, proposing novel therapeutic strategies based on this interaction (4) Recent studies have also explored the genetic interplay affecting the p53 pathway in CLL. Jalilian et al. (2021) investigated p53 and MDM2 polymorphisms in CLL patients, suggesting a complex genetic interaction that may influence disease susceptibility and progression (5). The critical role of p53 in CLL underscores the necessity for innovative therapeutic approaches targeting the p53 pathway. Understanding the multifaceted role of p53 in CLL not only provides insights into the disease's molecular underpinnings but also opens avenues for the development of targeted therapies aimed at overcoming resistance mechanisms and improving patient outcomes.

Understanding P53:

P53, colloquially termed the "genome's sentinel," occupies a pivotal position in the cellular defense against malignancy, orchestrating an elaborate suite of responses such as cell cycle cessation, programmed cell death, DNA rectification, and cellular aging processes. Its cardinal role in regulating a broad spectrum of cellular functions not only accentuates its intricacy but also underscores its significance in oncological research, including its implications for Chronic Lymphocytic Leukemia (CLL). Ongoing investigations have progressively unveiled the diverse roles of p53, shedding light on its influence over tumor suppression, metabolic control, redox regulation, and more. This exploration into p53's multifaceted network and its aberrations opens promising vistas for therapeutic interventions in cancer.

In the recent discourse, Boutelle and Attardi (2021) delineate the extensive network governed by p53, pointing out its transcriptional targets across various cellular mechanisms vital for thwarting oncogenesis. Likewise, Bernard E et al. (2020) probe into the interplay between p53 and the Apoptosis Inhibitor Proteins (IAPs) within colorectal cancer, delineating the therapeutic promise of targeting their interplay for cancer mitigation.

Further contributing to the nuanced understanding of p53's transcriptional landscape, Olivero et al. (2020) elucidate the significance of Pvt1b, a p53-responsive isoform of the long noncoding RNA Pvt1, in downregulating Myc transcription and counteracting cancer development. Concurrently, Liu et al. (2020) investigate the symbiosis between p53 and the TRIM protein family, highlighting the complex regulatory schema of p53 facilitated by post-translational modifications.

Moreover, the role of p53 in modulating ferroptosis—an iron-dependent form of cell death marked by lipid peroxidation—emerges as a salient aspect of its tumor-suppressive functionality. Liu et al. (2020) provide a comprehensive review of how p53 and its pathways regulate ferroptosis, suggesting innovative therapeutic strategies for cancer and other diseases.

As the body of research advances, the intricate network presided over by p53 continues to be a focal point for unraveling the molecular underpinnings of cancer and spearheading the development of targeted therapeutic modalities. The regulatory complexity and multifunctionality of p53 offer both challenges and opportunities for harnessing its potential in the fight against cancer.

The tumor suppressor protein p53, renowned as the "guardian of the genome," plays a seminal role in the cellular defense against carcinogenesis by modulating cell cycle progression, apoptosis, DNA repair, and cellular senescence. Its deregulation or mutation notably contributes to the pathogenesis of Chronic Lymphocytic Leukemia (CLL), a disease characterized by the aberrant accumulation of functionally incompetent lymphocytes. Research over the past years has increasingly highlighted the multifactorial nature of CLL, involving genetic mutations, epigenetic alterations, and disruptions in cellular signaling pathways, with alterations in the p53 pathway being of particular significance due to their profound impact on disease progression and response to treatment.

Mutations in the TP53 gene, encoding the p53 protein, or alterations affecting components of the p53 pathway can critically impair cellular mechanisms responsible for genomic stability and the DNA damage response. Such aberrations are linked to aggressive disease manifestations, chemotherapy resistance, and poorer prognostic outcomes in CLL. The loss of functional p53 facilitates the relentless proliferation of malignant cells and contributes to the genetic instability

that underlies CLL progression. Furthermore, the significance of p53 extends beyond tumor suppression. It intersects with various cellular pathways, influencing apoptosis, metabolism, and immune responses to neoplastic cells. The interaction between p53 and regulators of apoptosis, for instance, is pivotal for the clearance of cells harboring potentially oncogenic mutations. Disruption of this interaction in CLL not only enables the survival of malignant cells but also supports their evasion from immune surveillance. Recent investigations have also underscored the importance of p53 in determining the therapeutic responsiveness in CLL. DNA-damaging agents, which form the backbone of CLL therapy, rely on an intact p53 pathway to exert their cytotoxic effects. Consequently, CLL patients harboring defective p53 signaling frequently exhibit resistances to a broad spectrum of chemotherapeutic agents, underscoring the urgent need for novel therapeutic strategies that can either bypass or restore p53 functionality.

Several studies have significantly contributed to our understanding of p53's role in CLL:

- a. Blume et al. (2015) mapped out the landscape of p53-dependent microRNA/non-coding RNA induced in response to DNA damage in CLL, identifying key targets such as miR-34a, NEAT1, and lincRNA-p21, which are essential components of the p53-dependent DNA damage response machinery in CLL (1).
- b. Abdullah et al. (2015) investigated the correlation between p53 protein expression and various clinicopathological factors in CLL, highlighting the significance of p53 as a prognostic marker in the disease's progression (10).
- c. Jalilian et al. (2021) explored the impact of p53 and MDM2 polymorphisms on CLL pathogenesis, suggesting the interaction between these genotypes may confer susceptibility to CLL, and highlighting the complexity of the p53 pathway in CLL (5).

P53's role in CLL pathogenesis is intricate, influencing disease behavior, therapeutic response, and patient prognosis. Understanding the mechanisms underlying p53 dysfunction in CLL is crucial for developing targeted therapies and improving patient outcomes. As research continues to unravel the complexities of the p53 pathway, it holds the promise of opening new avenues for the treatment and management of CLL.

Impact on Treatment Response:

The influence of p53 dysfunction on treatment response in Chronic Lymphocytic Leukemia (CLL) is a critical area of study, given p53's role in regulating cell cycle progression, apoptosis, DNA repair, and cellular senescence. Aberrations within the p53 pathway, particularly mutations in the TP53 gene or alterations affecting its functionality, substantially impact the effectiveness of therapies designed to treat CLL, leading to chemoresistance and poorer prognostic outcomes.

a) Chemotherapy Resistance

Mutations or dysregulation of the p53 pathway confer resistance against various chemotherapeutic agents, primarily through the impaired apoptotic response of cells to DNA damage. Blume et al. (2015) highlighted the complexity of p53-dependent non-coding RNA networks in CLL, illustrating how mutations in the TP53 gene lead to chemotherapy resistance and a grim prognosis (1).

b) Targeted Therapies and Novel Agents

The advent of targeted therapies such as ibrutinib, a Bruton's tyrosine kinase inhibitor, and venetoclax, a BCL-2 inhibitor, has offered new hope. Moia and colleagues (2020) discussed the potential therapeutic options for TP53-disrupted patients, emphasizing agents that circumvent TP53 disruption, restore the function of mutant p53, or potentiate p53 function (11).

c) Restorative Approaches

Emerging strategies aim to restore p53 function or modulate the pathway to trigger tumor cell death. Molica et al. (2023) explored multiple therapeutic approaches to tackle TP53 dysfunction in high-risk CLL, suggesting the use of inhibitors and small-molecule p53 reactivators to improve outcomes (12).

d) Clinical Trials and Future Directions

Clinical trials have been instrumental in evaluating the efficacy of compounds targeting p53 dysfunction. For instance, O'Brien et al. (2016) conducted a study on ibrutinib for patients with relapsed or refractory CLL with 17p deletion, highlighting the drug's potential despite the challenges posed by p53 pathway aberrations (13).

And while the advent of targeted therapies has improved treatment options for CLL patients with p53 dysfunction, the search for more effective treatments continues. The development of novel therapeutic strategies that can overcome or bypass p53-mediated resistance mechanisms remains a priority, aiming to improve outcomes for this challenging subgroup of CLL patients.

Therapeutic Targeting of P53:

The pursuit of therapeutic strategies aimed at the p53 pathway in Chronic Lymphocytic Leukemia (CLL) constitutes a crucial area of exploration, especially for individuals bearing TP53 genetic aberrations, who typically exhibit suboptimal responses to conventional treatment modalities. Given the central role of p53 in orchestrating cellular responses to genotoxic stress, including apoptosis, DNA repair, and cell cycle regulation, and its frequent inactivation across a broad spectrum of malignancies, strategies to reactivate or simulate its tumor-suppressive functions are under intensive investigation.

a) Reinstating P53 Activity

Approaches focused on directly reinstating the activity of mutated p53 proteins or modulating the p53 pathway to trigger apoptosis in tumor cells are gaining traction. Compounds such as PRIMA-1MET, designed to reactivate mutant forms of p53, have shown promise in preclinical studies and CLL patient samples, suggesting a capability to counteract therapeutic resistance and initiate apoptotic processes in CLL cells harboring TP53 mutations (14,15). Furthermore, the exploration of agents like Protoporphyrin IX that inhibit both p53/MDM2 and p53/MDM4 interactions reveals a potential mechanism for inducing apoptosis in B-cell CLL without harming normal cells (16).

b) Disrupting MDM2-P53 Interactions

Targeting the interaction between MDM2 and p53 has emerged as a pivotal strategy for therapeutic intervention, aiming to disrupt this interaction and thus prevent MDM2-mediated p53 degradation. Clinical developments include MDM2 antagonists like idasanutlin, which specifically target the MDM2-p53 interface, potentially reinstating the tumor-suppressive functions of p53 in various cancers, including CLL (17).

c) Clinical Trials and Targeted Therapy

The clinical efficacy of ibrutinib, a Bruton's tyrosine kinase inhibitor, even in patients with TP53 deletions, underscores the utility of targeted therapies that, while not directly modulating p53, offer significant anti-tumor effects by engaging other pathways. The findings from the RESONATE-17 trial illustrate ibrutinib's role in enhancing the prognosis for CLL patients with TP53 mutations, offering an effective treatment pathway for this subgroup (13).

d) Innovative Strategies and Future Directions

Innovative therapeutic approaches continue to be developed, including those that leverage the activation of TAp73, a relative of p53, to bypass drug resistance in cases of p53 dysfunction, thereby inducing cell death through alternative apoptotic pathways (18).

Exploring therapeutic avenues targeting the p53 pathway in CLL is an evolving and promising field. Through direct activation of p53's tumor-suppressive functions, disruption of p53-inhibiting interactions, or the use of targeted therapies that obviate the need for p53, new strategies are broadening the treatment landscape for CLL. This ongoing innovation in therapeutic development underscores the shift towards precision medicine in addressing the complexities of CLL, particularly for patients with deficiencies in the p53 pathway.

Conclusions

In summary, the treatment paradigm for Chronic Lymphocytic Leukemia (CLL) is witnessing a pivotal shift, underscored by breakthroughs in the comprehension and targeting of the p53 signaling pathway. The paramount importance of p53 in maintaining cellular equilibrium and its tumor-suppressive capabilities highlights its strategic significance in therapeutic development, particularly for those afflicted with CLL and bearing TP53 genetic aberrations, who traditionally have poor prognoses. Initiatives focused on reviving p53's dormant functions, impeding its detrimental interactions, or leveraging targeted therapeutics that circumvent the necessity of p53 functionality, are opening new pathways to surmount therapeutic resistance and enhance patient care outcomes.

The progression within this domain, marked by the initiation of clinical trials evaluating MDM2 inhibitors and pioneering compounds designed to rehabilitate or amplify p53 activity, signifies a considerable leap forward. These advancements not only kindle optimism among patients with deficiencies in the p53 pathway but also highlight a transition towards tailored, precision-medicine strategies in the management of CLL. As ongoing research continues to unravel the intricate dynamics of the p53 pathway and its myriad interactions, the prospects for inventive therapeutic approaches to augment patient well-being and survival prospects grow increasingly tangible. This evolution toward fully leveraging the therapeutic promise of targeting the p53 pathway in CLL is a testament to the relentless quest for novel cancer treatment modalities, each discovery laying the groundwork for future breakthroughs.

References

1. Blume, C., Hotz-Wagenblatt, A., Hüllein, J., Sellner, L., Sellner, L., Jethwa, et al., (2015). p53-dependent non-coding RNA networks in chronic lymphocytic leukemia. *Leukemia*, 29, 2015-2023. <https://doi.org/10.1038/leu.2015.119>.
2. Isin, M., Yenerel, M., Aktan, M., Buyru, N., & Dalay, N. (2012). Analysis of p53 tumor suppressor pathway genes in chronic lymphocytic leukemia. *DNA and cell biology*, 31(5), 777–782. <https://doi.org/10.1089/dna.2011.1314>
3. Sellmann, L., Carpinteiro, A., Nückel, H., Scholtysik, R., Siemer, D., Klein-Hipass, et al, (2012). p53 protein expression in chronic lymphocytic leukemia. *Leukemia & Lymphoma*, 53, 1282 - 1288. <https://doi.org/10.3109/10428194.2011.654115>.

4. Wickremasinghe, R., Prentice, A., & Steele, A. (2011). p53 and Notch signaling in chronic lymphocytic leukemia: clues to identifying novel therapeutic strategies. *Leukemia*, 25, 1400-1407. <https://doi.org/10.1038/leu.2011.103>.
5. Jalilian, N., Maleki, Y., Shakiba, E., Aznab, M., Rahimi, Z., Salimi, M., & Rhimi, Z. (2021). p53 p.Pro72Arg (rs1042522) and Mouse Double Minute 2 (MDM2) Single-Nucleotide Polymorphism (SNP) 309 Variants and Their Interaction in Chronic Lymphocytic Leukemia (CLL): A Survey in CLL Patients from Western Iran. *International Journal of Hematology-Oncology and Stem Cell Research*, 15, 160 - 169. <https://doi.org/10.18502/ijhoscr.v15i3.6846>.
6. Boutelle, A., & Attardi, L. (2021). p53 and Tumor Suppression: It Takes a Network.. *Trends in cell biology*. <https://doi.org/10.1016/j.tcb.2020.12.011>.
7. Bernard, E., Nannya, Y., Hasserjian, R. P., Devlin, S. M., Tuechler, H., Medina-Martinez, et al, (2020). Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. *Nature medicine*, 26(10), 1549–1556. <https://doi.org/10.1038/s41591-020-1008-z>.
8. Olivero, C., Martínez-Terroba, E., Zimmer, J., Liao, C., Tesfaye, E., Hooshdaran, et al, (2020). p53 Activates the Long Noncoding RNA Pvt1b to Inhibit Myc and Suppress Tumorigenesis.. *Molecular cell*. <https://doi.org/10.2139/ssrn.3353218>.
9. Liu, J., Zhang, C., Wang, X., Hu, W., & Feng, Z. (2020). Tumor suppressor p53 cross-talks with TRIM family proteins. *Genes & Diseases*, 8, 463 - 474. <https://doi.org/10.1016/j.gendis.2020.07.003>.
10. Abdullah, A., Jaafar, A., & Alsaadawi, A. (2015). Immunohistochemical study of p-53 protein expression in chronic lymphocytic leukemia and its correlation with clinicopathological factors. *Journal of the Faculty of Medicine Baghdad*. <https://doi.org/10.32007/MED.1936/JFACMEDBAGDAD.V57I1.15>.
11. Moia, R., Boggione, P., Mahmoud, A., Kodipad, A., Adhinaveni, R., Sagiraju, S., et al, (2020). Targeting p53 in chronic lymphocytic leukemia. *Expert Opinion on Therapeutic Targets*, 24, 1239 - 1250. <https://doi.org/10.1080/14728222.2020.1832465>.
12. Molica, S., Tam, C., Allsup, D., & Polliack, A. (2023). Targeting TP53 disruption in chronic lymphocytic leukemia: Current strategies and future directions.. *Hematological oncology*. <https://doi.org/10.1002/hon.3238>.
13. O'Brien, S. M., Lamanna, N., Kipps, T. J., Flinn, I., Zelenetz, A. D., Burger, et al, (2015). A phase 2 study of idelalisib plus rituximab in treatment-naïve older patients with chronic lymphocytic leukemia. *Blood*, 126(25), 2686–2694. <https://doi.org/10.1182/blood-2015-03-630947>
14. Kwok, M., Agathangelou, A., Davies, N., & Stankovic, T. (2021). Targeting the p53 Pathway in CLL: State of the Art and Future Perspectives. *Cancers*, 13(18), 4681. <https://doi.org/10.3390/cancers13184681>
15. Wang, J., Liu, W., Zhang, L., & Zhang, J. (2023). Targeting mutant p53 stabilization for cancer therapy. *Frontiers in pharmacology*, 14, 1215995. <https://doi.org/10.3389/fphar.2023.1215995>
16. Jiang, L., Malik, N., Acedo, P., & Zawacka-Pankau, J. (2019). Protoporphyrin IX is a dual inhibitor of p53/MDM2 and p53/MDM4 interactions and induces apoptosis in B-cell chronic lymphocytic leukemia cells. *Cell Death Discovery*, 5. <https://doi.org/10.1038/s41420-019-0157-7>.
17. Duffy, M., Synnott, N., O'Grady, S., & Crown, J. (2020). Targeting p53 for the treatment of cancer.. *Seminars in cancer biology*. <https://doi.org/10.1016/j.semcan.2020.07.005>.

18. Tonino, S., Mulkens, C., Laar, J., Derkx, I., Suo, G., Boer, et al, (2015). Induction of TAp73 by platinum-based compounds to overcome drug resistance in p53 dysfunctional chronic lymphocytic leukemia. *Leukemia & Lymphoma*, 56, 2439 - 2447. <https://doi.org/10.3109/10428194.2014.996751>.